• sin(π/7) |
sin(25.714285)° = sin(25 + 5/7)° |
= 0.433883739117558 |
= 0.5 * √(2 - 1/⊙)
= 0.5 * √(1/⊙2 - ⊙)
= 0.5 * √(3 - ⊙2 - 2⊙)
|
• cos(π/7) |
cos(25.714285)° = cos(25 + 5/7)° |
= 0.900968867902419 |
= 0.5 * (⊙ +1)
= 0.5 * {1/⊙ + [1/(⊙ + 1)]}
|
• sin(2π/7) |
sin(51.428571)° = sin(51 + 3/7)° |
= 0.781831482468031 |
= 0.5 * [⊙√(⊙ + 3)]
= √(1 - 1/4⊙2)
|
• cos(2π/7) |
cos(51.428571)° = cos(51 + 3/7)° |
= 0.623489801858734 |
= (1 / 2⊙) |
• sin(3π/7) |
sin(77.142857)° = sin(77 + 1/7)° |
= 0.974927912181823 |
= 0.5 * √(⊙ + 3) |
• cos(3π/7) |
cos(77.142857)° = cos(77 + 1/7)° |
= 0.222520933956314 |
= 0.5 * √(1 - ⊙)
= 0.5 * [⊙/(⊙ + 1)]
|
• sin(4π/7) |
sin(102.857142)° = sin(102 + 6/7)° |
= 0.974927912181824 |
= 0.5 * √(⊙ + 3) |
• cos(4π/7) |
cos(102.857142)° = cos(102 + 6/7)° |
= -0.222520933956313 |
= - 0.5 * √(1 - ⊙)
= - 0.5 * [⊙/(⊙ + 1)] |
• sin(5π/7) |
sin(128.57142)° = sin(128 + 4/7)° |
= 0.781831482468031 |
= 0.5 * [⊙√(⊙ + 3)]
= √(1 - 1/4⊙2) |
• cos(5π/7) |
cos(128.57142)° = cos(128 + 4/7)° |
= -0.623489801858732 |
= - (1 / 2⊙) |
• sin(3π/14) |
sin(38.571428)° = sin(38 + 4/7)° |
= 0.623489801858733 |
= (1 / 2⊙) |
• cos(3π/14) |
cos(38.571428)° = cos(38+ 4/7)° |
= 0.78183148246803 |
= 0.5 * [⊙√(⊙ + 3)]
= √(1 - 1/4⊙2) |
• sin(5π/14) |
sin(64.285714)° = sin(64 + 2/7)° |
= 0.900968867902419 |
= 0.5 * (⊙ +1)
= 0.5 * {1/⊙ + [1/(⊙ + 1)]} |
• cos(5π/14) |
cos(64.285714)° = cos(64 + 2/7)° |
= 0.433883739117559 |
= √[0.5 * (1 - 1/2⊙)]
=
0.5 * √(2 - 1/⊙)
= 0.5 * √(1/⊙2 - ⊙)
= 0.5 * √(3 - ⊙2 - 2⊙) |
• sin(π/14) |
sin(12.857142)° = sin(12 + 6/7)° |
= 0.222520933956314 |
= 0.5 * √(1 - ⊙)
= 0.5 * [⊙/(⊙ + 1)] |
• cos(π/14) |
cos(12.857142)° = cos(12 + 6/7)° |
= 0.974927912181824 |
= 0.5 * √(⊙ + 3) |
• sin(2π/21) |
sin(17.142857)° = sin(17 + 1/7)° |
= 0.294755174410904 |
|
• cos(2π/21) |
cos(17.142857)° = cos(17 + 1/7)° |
= 0.955572805786141 |
{[(√3) /4] * √(⊙ + 3)} + 0.5 - (1/4⊙2) |